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Why one-loop Feynman integrals?
And why in D = 4 + 2n — 2¢ dimensions?

Based on [1, 2], | began in 1980 to calculate Feynman integrals, see
Mann, Riemann, 1983 [3]: “Effective Flavor Changing Weak Neutral Current In The
Standard Theory And Z Boson Decay”

Basics

The seminal papers on 1-loop Feynman integrals:

't Hooft, Veltman, 1978 [1]: “Scalar oneloop integrals”

Passarino, Veltman, 1978 [2]: “One Loop Corrections for e*e™ Annihilation into ™+ p™
in the Weinberg Model”

Interest in “modern” developments for the calculation of 1-loop
integrals from basically two sides

1. For many-particle calculations, there appear inverse Gram determinants from
tensor reductions in the answers.

These 1/G(p;) may diverge, because Gram dets can exactly vanish: G(p;) = 0.

One may perform tensor reductions so that no inverse Grams appear, but one
has to buy 1-loop integrals in higher dimensions, D = 4 + 2n — 2¢. See [4, 5]
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Interest in “modern” developments for the calculation of 1-loop
integrals from basically two sides

2. Higher-order loop calculations need h.o. contributions from e-expansions of
1-loops:

1/(d—4)=—1/(2¢)andT'(¢) =a/e+c+e+---

A Seminal paper was on e-terms of 1-loop functions:

Nierste, Muller, Béhm, 1992 [6]: “Two loop relevant parts of D-dimensional massive
scalar one loop integrals”

1-loop integrals in D dimensions

A general solution in D dimensions was derived in another 2 seminal papers:
Tarasov, 2000 [7] and Fleischer, Jegerlehner, Tarasov, 2003 [8]: “A New
hypergeometric representation of one loop scalar integrals in d dimensions”

| was wondering if the results of Fleischer/Jegerlehner/Tarasov (2003) are sufficiently
general for practical, black-box applications, and saw a need of creating a software
solution in terms of contemporary mathematics.
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So we decided to study the issue from scratch in 2 steps:

1st step: Re-derive analytical expressions for
scalar one-loop integrals as meromorphic functions of arbitrary space-time
dimension D

e 2-point functions: Gauss hypergeometric functions »F; [9]

® 3-point functions: additional Kamp’e de F’eriet functions F; there are the Appell
functions Fi, ... F4 [10]

® 4-point functions: additional Lauricella-Saran functions Fs [11]

2nd step:
Derive the Laurent expansions around the singular points of these functions.

This talk:
® Analytical expressions for self-energies, vertices, boxes
® Numerical checks
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Here, the F-function is the second Symanzik polynomial.
It is derived from the propagators (2),
M2 = xDi+---4+xyDy = kz—QQk-i-J. (5)

Using 6(1 — Y x;) under the integral in order to transform linear terms in x into quadratic ones, we
may obtain:

Fa(x) = *(Zx,')J+Q2 = %iZinYi/x./*ifz (6)

The Y;; are elements of the Cayley matrix, introduced for a systematic study of one-loop n-point
Feynman integrals e.g. in [12]

Yi=Y;i = mzz + mjz — (i — qj)z' @

There are N, = %n(n + 1) different Y;; for n-point functions: N3 = 6, N, = 10, N5 = 15.
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The operator k™ ...

... will reduce an n-point Feynman integral J, to an (n — 1)-point integral J,,—; by shrinking the
propagator 1/Dy

_ _ [ d% 1 dk 1
Ko = /'d/z n - /'4/2 A ' )
in?/2 [Ti_, Dj im?/2 Tzt j=1Dj
Mellin-Barnes representation

+ico
1 _ T(=s)T(A+s) Ab;o
(1+2)* T o) © - ZFI[ b; Z]' &

—ioco
It is valid if |Arg(z)| < 7 and the integration contour has to be chosen such that the poles of

I'(—s) and T'(\ + s) are well-separated. The right hand side of (9) is identified as Gauss’
hypergeometric function. For more details see [13]).
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F-function and Gram and Cayley determinants

Gram and Cayley det’s are introduced by Melrose [12] (1965). The Cayley determinant Ay, is
composed of the

Yj = m} +m; — (qi — q;)* introduced in (7), and its determinant is:

Yin Yo ... Y
Yo Yo ... Yy
A=A = . . (10)
Yin Y ... Ym
We also define the (n — 1) x (n — 1) dimensional Gram determinant g, = gi2....,
(a1 — qn)? (@1 —an)(g2 —qn) -+ (@1 = qn)(gn—1 — qn)

(g1 — an)(q2 — qn) (g2 — qn)? oo (g2 = an) (g1 — qn)

GnEGlz,_,n = — . (1

=)o =) o—lln=c) oo (=P

Both determinants are independent of a common shifting of the momenta g;.
Further, the Gram det G, is independent of the propagator masses.
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Co-factors of the Cayley matrix

One further notation will be introduced, namely that of co-factors of the Cayley matrix.
Also called signed minors in e.g. [12, 14]):

J1oJ2 cccim
The signed minors are determinants, labeled by those rows ji,j», - - - jm @and columns ki, kp, - - - km

which have been discarded from the definition of the Cayley determinant (),, with a sign
convention.

Sig]( i im ) = (—pftrtatedimtk ket g gnature|
kK km ),

Here, signature (defined like the Mathematica command) gives the sign of permutations needed to place the indices in increasing order.

)\,,:( 0 ) (14)

j1:J2s -+ -im] X Signaturelky, ky, - - - K}B)

Cayley matrix, by definition:

Further, it is (see [15]):

1 1 O\, 0
— = Oidn= —= = ; . 15
27 2 Om? ( L >” (15)
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The elimination of one of the x; creates linear terms in F(x).

Fu(x) = x"Gux 4 2H! x + K,. (16)

The F,(x) may be cast by shifts x — (x — y) into the form

Fu(x) = (x=y)'Gu(x—y) +rm—ie = A(x) + 10 —ie = Au(x) + Ry, (17)
M) = (x=»'Gilx—y), (18)
and
0
rm = K, —H' G 'H, = RN < 0 > (19)
8&n ()n

The inhomogeneity R, = r, —ie carries the ie-prescription.
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The linear shifts y;

The (n — 1) components y; of the vector y appearing here in F,(x) are:

yi = —(G;lK,l)i, i#n (20)

The following relations are also valid:

O 1L aM 20 e
Yi - am,z &n 8"112 o &n &n n7 o '

a i
The auxiliary condition "7 y; = 1 is fulfilled.

We see that the notations for the F-function are finally independent of the choice of the
variable which was eliminated by use of the §-function in the integrand of (4).

The inhomogeneity R, is the only variable carrying the causal ie-prescription, while e.g.
A(x) and the y; are by definition real quantities.
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The recursion relation for J,

One may use the Mellin-Barnes relation (9) in order to decompose the integrand of J,
given in (4) as follows:

~-9)

I 1 _ R
FEOIF 7~ A +R)S [+ S0p—d
—(n—4¢ —+ico \
RO T T =49 A
= N dS 7 , (22)
27 _ I(n—9) R,

for |Arg(A,/R,)| < . The condition always applies. Further, the integration path in the
complex s-plane separates the poles of I'(—s) and I'(n — £ +s). As a result of (22), the
Feynman parameter integral of J, becomes homogeneous:

n—1 _ ",:Lrl"’ s s
m=HAQL w{%@}z/mqﬁgq. (23)

j=1"
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The recursion relation for J,
In order to solve the integral in (23), we consider the differential operator P, [16, 17],

NI SETTREN (0] Y EVC)

i=1

~

This eigenvalue relation allows to introduce the operator P, into the integrand of (23):
S n—1n—1 s
B P, Z An(x)

Kn = /dS,,_l T [ Rn :| = 25 IH/dxk |:R7n:| . (25)

After a series of manipulations in order to perform one of the x-integrations — by partial
integration, eating the corresponding differential — one arrives at:

+ico d
(=) D(=s) T(n—4+s)T(s+1) [ 1\" 2
= / as 2T(s +2) (RT,)

() s
S (o) S5 || e
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We stress again that only the R, carries an ie. Now it is important to eliminate the
term (—1) from the combination (F,(,’Z]/R,, —1)* under the Mellin-Barnes integral over s,
because then we arrive at a sum over the n different (n — 1)-point functions arising from

skipping a propagator from the original integral. In fact, this may be arranged using the
following relation for (—z) = F/R — 1 [18]:

+ico
/ as T2 F1(“C(lc++S)s)F(b ) gy @)
- +i°°ds I(—s)T(a+b—c—sT(c—a+s)T(c—b+s)
T(c —a)T(c — b)

( 1 — Z)c—a—b-‘,—s7
—ioco

provided that |Arg(—z)| < 2.
We arrive at the following recursion relation:
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The recursion relation for 1-loop r-point functions

“+ico

—1 [(—s) T(=2E L OD(s + 1)
2 _ 2 —s
n gy = o [ as = S,
—ioco 2
Z 1 Ory _ 2
= K~ J,(d + 2s; {qi, m?}). 28
X;:l <r,, 8”%) (d+ 25 {qi,m;’}) (28)

The cases G, = 0 and \, = r, = 0 prevent the use of the Mellin-Barnes transformation. They are
simpler than what we have to do here. Details are given elsewhere.

1-point function, or tadpole

dk 1 I(1—d/2)
J—i — —
Ji(d;m”) ,/i7r‘l/2 2 T 2 —ie)i=il2" (29)

Comments

1. In Tarasov 2003 [8], a recursion was derived where our Mellin-Barnes integral is replaced by
an infinite sum to be solved. Formulae for 2,3,4-point functions are given.

2. A 4-point function is a 3-fold integral. With AMBRE, we get up to 15-fold integrals instead.

3. See Johann Usovitsch’s talk: Integrand is equally integrable for Euklidean and Minkoswkian
cases.
No Gram=0 problem.
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The 2-point function

From our recursion relation (28), taken at n = 2 and using the expression (29) with
d — d + 2s for the one-point functions under the integral, one gets the following
representation:

+ioco
o 7 Bean s ) e,
o T
1 Ory I (1 — 2%
X |:r2(9mzz((2)102+2‘)+(m%<_>m§) . (30)
2 (my P

JZ(D7 qi, m%7 CIZ,m%)

One may close the integration contour of the MB-integral in (30) to the right, apply
the Cauchy theorem and collect the residua originating from two series of zeros of
arguments of I'-functions at s =mand s =m —d/2 — 1 form € N.

The first series stems from the MB-integration kernel, the other one from the dimensionally
shifted 1-point functions.

And then summing up in terms of Gauss’ hypergeometric functions.
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The 2-point function (slightly rewritten), R, = Ry

r(2—4)r(4-1
2 2 MR
Dd; Qi qrm3) = — (E,_z)> E ) ot 31)

N 1&g =1 m% R22_I
(m)2="2F1| 72 2T o+ VT
o F(z—i)

+ (> m3)
. . . m% m% d—2
The representation (31) is valid for < LgE <1 and Re(5=) > 0.

Tarasov et al. (2003) [8].

The result is in agreement with Egn. (53) of o

LL2018 @ St. Goar
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According to the master formula (28), we can write the massive 3-point function as a
sum of three terms:

Ji = Jis+ a1+ s, (32)

using the representation for e.g. Ji23

~+ico

o D(—s) T(=FE)0(6+1)
d i 2 = —e / 2 R s
J123( 7{q 7ml}) 2 . 21-\(11;2) 3
1 0rs . 2 2
X 3 8m§ J2(d+237q17m17q2,m2)- (33)
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Here, Jo(d + 2s; g1, m3, g2, m3) is given by (31), taken at d + 2s dimensions. By performing the Mellin-Barnes
integrals, one gets three terms, each consisting of eight series, from taking the residues by closing the integration
contours to the right; one of the three terms is:
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(34)

d 42
Ji23 = r(2-— 5 R123 X h123
d_y
B ﬁf‘ (2 — %) T (% — l) O3\ 123 Rlzz A2 I O A2
r (4! Az 4dn w? m2
2 1 — L 1 — -2
Ry Ry
d 2
b gr (2 4) 2 | 2de P, (402 1 d o
d—2 2 A123 w4 : 2 772727 Rz Ri
Rip
2 2
+ (mj < mz)],
and
b I O3 12 i o112 [ 1,1; R12:| (35)
123 - 2 L
2812 i3 3 35 R
Ry Rz
DM hA m’ 1 m m?
B T O (PR T P R I R B
A3 m2 4An 2 Rz R
-
12
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where 9;);... is defined in (21). The representation (32) is valid for Re(d — 2/2) > 0.
The conditions |m?/R;| < 1, |R;j/Ri| < 1 had to be met during the derivation. The
result may be analytically continued in a straightforward way, however, in the complete
complex domain.

The functions »F; and F; of the b-terms are met by setting d = 4 in the corresponding
functions J of the general Js.
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An alternative writing of J3 = Ji23 + J231 + Ja12 is, with R3 = Ri23, R, = Ry» efc. here:

The massive vertex

Osr3 dor2 -

T = o= L) LR
1 ( 2) 3o 24/1—mi/r

+F(277) (931‘3 (9zrz mz

2) i n 4\/1—m2/r2

+2(m%)d/2_2Fl d—2 , 1.dm m R (11, Lo, : m
d—2 2 ) 72727 37 b 3 2 R R2

For d — 4, both the [...] approach zero.
So the J; is finite in this limit, as it should be for massive 3-point function.
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For the 3-point function, we look at the expression Ji23 + J231 + J312.
We should agree with Eqn. (74) to (76) of Tarasov (2003).

Our terms with d-dimensional F; and »F, do agree exactly, but b123 + b231 + b312 looks
quite different.

Tarasov (2003) [8], Egns. (73) and (75)

There are kinematic conditions on internal momenta g¢; = (¢: — ¢;)* to be respected;
the bs-term of Tarasov becomes:

Jb) = 6(=Gs) x 6(q;) X 9(’%‘2—1)
x LA (32 5 =G Rat) (36)
Otherwise:
J3(b3) = b3y = 0. (37)
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Numerics for 3-point functions, table 1

Vertex numerics

@000

4-point
0000

Summary

[e]

o

References

7, [m7] [+100, +200, +300], [10, 20, 30]
Gis —160000

123 -8860000

m? /1123 —0.180587, —0.361174, —0.541761
m? [ria -0.97561, —1.95122, —2.92683

m? /123 -0.39801, —0.79602, —1.19403

m? [y -0.180723, -0.361446, —0.542169
> J-terms (0.019223879 — 0.007987267 |)
>~ by-terms 0

J;(TR) (0.019223879 — 0.007987267 |)
by-term (~0.089171509 + 0.069788647 Iy +(0.022214414 )/eps
by + > Jterms | (-0.012307377 —0.009301346 I)
J3(OT) >~ J-terms, bs-term — 0, OK

MB suite

[

[

(-1)*fiesta3

[

-(0.012307 + 0.009301 1)

[ + (8106 + 0.00001 ) pm4

LoopTools/FF, €° [ 0.0192238790286244077-0.00798726725497102795 i [

l
)]
l

Table 1: Numerics for a vertex in space-time dimension d = 4 — 2¢. Causal e = 10~%. Red input quantities
(external momenta shown here!) suggest that, according to Eqn. (73) in Tarasov (2003) [8], one has to set

b3 = 0.

Although b3 of [8] deviates from our vanishing value, it has to be set to zero, b3 — 0.
The results of both calculations for J; agree for this case.
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0000
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7, [m7] [-100, +200, -300], [10, 20, 30]

G 480000

A3 -19300000

m?/rs 0.248705, 0.497409, 0.746114

m?/ris 0.248447, 0.496894, 0.745342

m? /123 -0.39801, -0.79602, -1.19403

m? [y 0.104895, 0.20979, 0.314685

S J-terms (-0.012307377 - 0.056679689 1) + (+0.012825498 l)/eps
S by-terms (+0.047378343) - (+0.012825498 Ty/eps
J;(TR) (-0.012307377 - 0.009301346 |)

by-term (+0.047378343) - (+0.012825498 Ty/eps
b3+ J-terms (-0.012307377 - 0.009301346 1)

J3(OT) > J-terms, b3-term—0, gets wrong

MB suite

[

[

|

(-1)*fiesta3

[

-(0.012307 + 0.009301 1)

[ + (8710-6 + 0.00001 1) pm4 )

|

LoopTools/FF, €’

[

-0.0123073773677820630 - 0.0093013461700863289 i |

l

Table 2: Numerics for a vertex in space-time dimension d = 4 — 2e.
quantities suggest that, according to eq.

Causal ¢ = 107%.
(73) in Tarasov2003 [8], one has to set b3 = 0. Further, we have

Red input

set in the numerics for eq. (75) of Tarasov2003 [8] that Sqrt[-g123 + I*epsil], what looks counter-intuitive for a
“momentum”-like function.
Both results agree if we do not set Tarasov’s b3 — 0.
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Vertex numerics
0000

4-point Summary
0000 [e]

I —100,-200,-300
m? 10,20,30
G2 —160000
Al123 15260000
m?/rio 0.104849, 0.209699, 0.314548
miz/rlz 0.248447, 0.496894, 0.745342
m? [ 0.133111, 0.266223, 0.399334
m? /131 0.104895, 0.20979, 0.314685
3 J-terms (0.0933877 -0 |) —(0.0222144 — 0 l)/eps
> b-terms -0.101249 +0.0222144/eps
J5(TR) (~0.00786155 — 0 1)
b3 (-0.707249 + 01 +(0.0222144 + 0 I)/eps
bs+J-terms (-0.007861546 + 0 )
J3(OT) by+J-terms — OK
[ MB suite [ -0.007862014, 5.002549159"10-6, 0| ]

(-1)*fiesta3

—(0.007862)

[ + (67106 + 6°10-6 [pm10) |

LoopTools/FF, € |

—0.00786154613229082290

l |

Table 3: Numerics for a vertex in space-time dimension d = 4 — 2¢. Causal e = 1072,
Agreement with Tarasov (2003).
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0000 o o

A +100, —200, +300

m? 10, 20, 30

G 480000

A2 4900000

m? /1123 -0.979592, —1.95918, —2.93878

m? [ri> -0.97561, —1.95122, —2.92683

m? /a3 0.133111, 0.266223, 0.399334

m? /31 -0.180723, —0.361446, —0.542169

> J-terms (0.006243624 - 0.018272524 1)

> by-terms 0

J;(TR) (0.006243624 - 0.018272524 1)

by-term (0.040292497 + 0.029796253 1) + (- 0.012825498 T)/eps
b3+3" J-terms (-0.012307377 - 0.0093013486 |) +(4*-18 - 6*-18 I)/eps
J3(OT) >~ J-terms, bs3-term—0, OK

MB suite

[

[

(-1)*fiesta3

[

~(-0.006322 + 0.014701 1)

[ +(0.000012 +0.000014 1) pm

LoopTools/FF, ¢ | 0.00624362477277410 - 0.01827252404872805 i |

Table 4: Numerics for a vertex in space-time dimension d = 4 — 2¢. Causal e = 10”2 Red input quantities

suggest that, according to eq. (73) in Tarasov2003 [8], one has to set b3 = 0.

Agreement with Tarasov (2003) due to setting »; = 0 there.
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The 4-point function

According to the master formula (28), we can write the massive 4-point function as a
sum of four terms:

Jo = Ji23s + J23a1 + Jaa12 + Jaros, (38)
Each of the four terms has the structure
r2-4)r(4¢-1
( FZ()H()2 ) X (r]234)

2

(S0

Jize =

2 X bix
+T(2-4d/2) iniz34 (39)

The pre-factor is singular: I'(2 — d/2) = 1/e+ --- ford > 4 — 2e.

We agree for J¢,,, etc. with Tarasov (2003) [?].
For the b4-term, the situation is a bit unclear.
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The boundary term by,34 is independent of d:

- 1 [ biaz Orizzs VT
biza = =
V1 = i3 /riosa

2

1 Oris 1 Orin
+vT —
(r1234 om3 ) <r123 3’";) 4812
82)\12 81>\12

1 13
)Fl (31332 @
\/1 —m}/r \/1 —m3/r \/1 - rlz/rm 277272 oz i3
- 1 6"1224 l Ori3
rioza Omy riz3 Om3
hHA 2
h A2 m; 123
X 5] 2
" 812 riz — mj
2

1 1 2 m% m2
P | 3oL 1 1 252,22 =0 Pl T ) 4 (1452)

2
rizza’ mi—ris’ md —rip

rizze Om?

+(2,3, 1)+ (3,1,2).

The boundary term 4, has not been exactly defined in [?], concerning the kinematica
conditions. We did not perform massive numerical tests.
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and

. d_,
Jiza = (riaa)2 " X b
1 1 Oris 201 o d_
-= > | 2F1 X (r23) 277 X bizs
2 \ rizza Omy 5= 15 rioy

+\/;F(% jl;) < 1 8r1234> ( 1 6}”123) 62)\12 81)\12

d >
INE= riza Omg ria3 Om3 L n
o 2

[
% rl22 Fl(d ’; 1 d—l’rlz’rliz>
812 1— Ny 2 2 rize nios
23
r(¢- 1 a 1 a
B (¢ : ) 1234 s r1223 « (1)
F(LE 1234 8!714 r123 6m3

123 12 DA 2,41

123 — my rz —mj 12

d-3 I ddd m ? 7

xFs (21,0, 05,85 M M T ) 4 (1602)
2 2 2’272’ rm4 m1 —rm m] —

+(2,3,1) + (3, 1,2).
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An alternative writing of J4 = Ji234 +J2341 +J3412 + Ja123 IS, With R4 = R1234, R3 = Ri23, R0 =
R\ etc. here:

The massive box function

647'4
Jiog = T'(2—<-)—
o < 2) ra {

b _ d=3 1. R _ r(¢d—1
{% (7Rg/z zzFl[ oL z] LR (; 3) JFi(d = 4)
g Z

I'(4-1) V7 osr3 Ohry F[ 1/2,1; Rz]
2F) —

T = —_— .
r(s-3) 4 n \/1 —m?/R, b R
d/2—2
R d-3 1d-1R R s
2
o (A R S ) SR ¢
{Jr d—3 ‘( 2 2 2 'Ry R3> 4 1 )
m% F(g—l) O3r3 Orra r &)

d_ 3 — 2y — m?
8F(2 5) 13 2 or3—myr—m

LT (4-3/2) m? m? m?
— ()P R pg(d/2 — 3/2,1,1,1,1,d/2,d/2,d/2,d/2, =L, 5 L
[~ o) Ly S/ = 321 d/2,4/2,4/2,4/2 B e
+ R/ VEEs(d - 4]+ (m?<—>m§)} (42)

For d — 4,all three [...] approach zero.
So that the massive J4 gets finite then: OK.
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Summary

31/31

We derived a new recursion relation for one-loop scalar Feynman integrals:
self-energies, vertices, boxes etc.

The condition v; = 1 seems to be essential for that.
A generalization to multiloops seems to be not straightforward or impossible.

Solving the recursions in terms of special functions reproduces essential
parts of the results of Tarasov et al. from 2003.

Concerning their b;-terms, we see a need of improvement compared to their
paper, if their result is not just wrong in some kinematical situations. Our
conclusions concerning that depend somewhat on an interpretation of their text.
We derived a new series of Mellin-Barnes representations: 1-dimensional
for self-energies, 2-dim. for vertices, and 3-dimensional for box diagrams
for the most general kinematics. Compared to dim=3, 5, 9 respectively, in the
“conventional” Mellin-Barnes-approach.

This is worked out by Johann Usovitsch.

Again, we see no direct generalization to multi-loops.

The special case of vanishing Gram determinant G, = 0 is not covered. But
small Gram determinants are, and one has to take measures to get reasonable
numerics. — Small Gram dets are very interesting, but nothing is done.
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